首页 | 本学科首页   官方微博 | 高级检索  
     


Relative Cation-Anion Diffusion in Alkyltriethylammonium-Based Ionic Liquids
Authors:Danuta Kruk,Elż  bieta Masiewicz,Karol Koł  odziejski,Roksana Markiewicz,Stefan Jurga
Affiliation:1.Department of Physics and Biophysics, University of Warmia & Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland; (E.M.); (K.K.);2.NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (R.M.); (S.J.)
Abstract:19F Nuclear Magnetic Resonance spin-lattice relaxation experiments have been performed for a series of ionic liquids including the same anion, bis(trifluoromethanesulfonyl)imide, and cations with alkyl chains of different lengths: triethylhexylammonium, triethyloctylammonium, decyltriethylammonium, dodecyltriethylammonium, decyltriethylammonium, and hexadecyltriethylammonium. The experiments have been carried out in a frequency range of 10 kHz to 10 MHz versus temperature. A thorough analysis of the relaxation data has led to the determination of the cation–anion as a relative translation diffusion coefficient. The diffusion coefficients have been compared with the corresponding cation–cation and anion–anion diffusion coefficients, revealing a correlation in the relative translation movement of the anion and the triethylhexylammonium, triethyloctylammonium, decyltriethylammonium, and dodecyltriethylammonium cations, whereas the relative translation diffusion between the anion and the cations with the longer alkyl chains, decyltriethylammonium and hexadecyltriethylammonium, remains rather uncorrelated (correlated to a much lesser extent).
Keywords:ionic liquids   relaxation   dynamics   diffusion   nuclear magnetic resonance   correlation effects
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号