首页 | 本学科首页   官方微博 | 高级检索  
     


Neural Nets Trained by Genetic Algorithms for Collision Avoidance
Authors:Nicolas Durand  Jean-Marc Alliot  Frédéric Médioni
Affiliation:(1) Centre d'Etudes de la Navigation Arienne, France;(2) Centre d'Etudes de la Navigation Arienne, France;(3) Centre de Mathématiques Appliquées de l'Ecole Polytechnique, France
Abstract:As air traffic keeps increasing, many research programs focus on collision avoidance techniques. For short or medium term avoidance, new headings have to be computed almost on the spot, and feed forward neural nets are susceptible to find solutions in a much shorter amount of time than classical avoidance algorithms (A*, stochastic optimization, etc.) In this article, we show that a neural network can be built with unsupervised learning to compute nearly optimal trajectories to solve two aircraft conflicts with the highest reliability, while computing headings in a few milliseconds.
Keywords:air traffic control  collision avoidance  neural networks  genetic algorithms
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号