首页 | 本学科首页   官方微博 | 高级检索  
     


An investigation of the fatigue and fracture behavior of mn-containing gamma titanium aluminides
Authors:W O Soboyejo  C Mercer  K Lou  S Heath
Affiliation:(1) Department of Materials Science and Engineering, The Ohio State University, 43210-1179 Columbus, OH;(2) Union College, 12301 Schenectady, NY;(3) AGA Gas Company, S-181 31 Lidingo, Sweden
Abstract:The fatigue and fracture mechanisms in Ti-48Al-xMn (x = 1.4 to 2.0 at. pct) gamma-based titanium aluminide alloys are elucidated. Unlike most gamma alloys, which fail predominantly by transgranular fracture at room temperature, fracture in ternary Ti-48Al-xMn alloys is shown to occur mainly by intergranular failure. The incidence of intergranular failure increased with increasing annealing duration and temperature. Intergranular fracture is shown to occur as a result of the segregation of Mn to equiaxed and interlamellar boundaries. Annealing either above or below the eutectoid temperature results in the precipitation of α2 particles. The reduction in the strength and toughness of ternary Mn-containing alloys is attributed to the combined effects of segregation and α2 precipitation. A micromechanics framework is presented for the assessment of twin toughening mechanisms under monotonie and cyclic loading. Formerly Staff Scientist with General Electric Research and Development, Schenectady, NY 12301 Formerly Undergraduate Student, Department of Materials Science and Engineering, The Ohio State University
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号