首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic positron emission tomography data-driven analysis using sparse Bayesian learning
Authors:Peng Jyh-Ying  Aston John A D  Gunn Roger N  Liou Cheng-Yuan  Ashburner John
Affiliation:Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan.
Abstract: A method is presented for the analysis of dynamic positron emission tomography (PET) data using sparse Bayesian learning. Parameters are estimated in a compartmental framework using an over-complete exponential basis set and sparse Bayesian learning. The technique is applicable to analyses requiring either a plasma or reference tissue input function and produces estimates of the system's macro-parameters and model order. In addition, the Bayesian approach returns the posterior distribution which allows for some characterisation of the error component. The method is applied to the estimation of parametric images of neuroreceptor radioligand studies.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号