首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular dynamics simulations of ovalbumin adsorption at squalene/water interface
Authors:Qingxia Xiong  Ying Ren  Yufei Xia  Guanghui Ma  Reiji Noda  Wei Ge
Abstract:The adsorption of protein molecules to oil/water (O/W) interface is of critical importance for the product design in a wide range of technologies and industries such as biotechnology, food industry and pharmaceutical industry. In this work, with ovalbumin (OVA) as the model protein, the adsorption conformations at the O/W interface and the adsorption stability have been systematically studied via multiple simulation methods, including all-atom molecular dynamic (AAMD) simulations, coarse-grained molecular dynamic (CGMD) simulations and enhanced sampling methods. The computational results of AAMD and CGMD show that the hydrophobic tail of OVA tends to be folded under long time relaxation in aqueous phase, and multiple adsorption conformations can exist at the interface due to heterogeneous interactions raising from oil and water respectively. To further study the adsorption sites of the protein, the adsorption kinetics of OVA at the O/W interface is simulated using metadynamics method combined with CGMD simulations, and the result suggests the existence of multiple adsorption conformations of OVA at interface with the head-on conformation as the most stable one. In all, this work focuses on the adsorption behaviors of OVA at squalene/water interface, and provides a theoretical basis for further functionalization of the proteins in emulsion-based products and engineering.
Keywords:Molecular dynamics simulation  Metadynamics  Protein adsorption  Structural stability  Ovalbumin  
点击此处可从《中国化学工程学报》浏览原始摘要信息
点击此处可从《中国化学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号