Mammogram Learning System for Breast Cancer Diagnosis Using Deep Learning SVM |
| |
Authors: | G. Jayandhi J.S. Leena Jasmine S. Mary Joans |
| |
Affiliation: | 1 Research Scholar, Anna University, Chennai, Tamilnadu, 600 025, India2 Velammal Engineering College, Chennai, Tamilnadu, 600 066, India |
| |
Abstract: | The most common form of cancer for women is breast cancer. Recent advances in medical imaging technologies increase the use of digital mammograms to diagnose breast cancer. Thus, an automated computerized system with high accuracy is needed. In this study, an efficient Deep Learning Architecture (DLA) with a Support Vector Machine (SVM) is designed for breast cancer diagnosis. It combines the ideas from DLA with SVM. The state-of-the-art Visual Geometric Group (VGG) architecture with 16 layers is employed in this study as it uses the small size of 3 × 3 convolution filters that reduces system complexity. The softmax layer in VGG assumes that the training samples belong to exactly only one class, which is not valid in a real situation, such as in medical image diagnosis. To overcome this situation, SVM is employed instead of the softmax layer in VGG. Data augmentation is also employed as DLA usually requires a large number of samples. VGG model with different SVM kernels is built to classify the mammograms. Results show that the VGG-SVM model has good potential for the classification of Mammographic Image Analysis Society (MIAS) database images with an accuracy of 98.67%, sensitivity of 99.32%, and specificity of 98.34%. |
| |
Keywords: | Deep learning architecture support vector machine breast cancer visual geometric group data augmentation |
|
| 点击此处可从《计算机系统科学与工程》浏览原始摘要信息 |
|
点击此处可从《计算机系统科学与工程》下载全文 |
|