首页 | 本学科首页   官方微博 | 高级检索  
     

大气压介质阻挡放电及协同催化剂脱硝研究进展
引用本文:张维,汪宗御,郭玉,杨孟飞,李政楷,常超,张继锋,纪玉龙.大气压介质阻挡放电及协同催化剂脱硝研究进展[J].化工进展,2022,41(12):6644-6655.
作者姓名:张维  汪宗御  郭玉  杨孟飞  李政楷  常超  张继锋  纪玉龙
作者单位:1.大连海事大学轮机工程学院,辽宁 大连 116026;2.浙江清华长三角研究院,浙江 嘉兴 314006
基金项目:中国博士后科学基金(2021M690496);国家重点研发计划(SQ2019YFE011597);国家自然科学基金(51876019);大连市杰出青年科技人才支持计划(2020RJ03);中央高校基本科研业务费(3132019331)
摘    要:受绿色生态和可持续发展战略理念的驱动,废气排放对环境造成的危害备受关注。NO x 作为废气的主要污染物之一,是废气污染物控制的重点与难点。基于此,本文介绍了传统后处理脱硝技术的优缺点及应用现状,回顾了介质阻挡放电(DBD)基础研究,分析了DBD脱硝性能,重点阐述了DBD协同催化剂脱硝及脱硝机理。分析指出:①DBD驱动电源与反应器结构是制约脱硝性能的关键因素;②单独DBD技术脱硝性能较差,而DBD协同催化填充床技术展现出优异的脱硝性能和较高的N2选择性;③等离子体协同催化脱硝机理研究主要包括等离子体特征参数诊断、流体模型验证、等离子体传播机制分析以及原位表征,而在等离子体催化理论计算方面的研究较为缺乏。因此,未来DBD协同催化脱硝技术应立足如下几个方面发展:研发高功率、低能耗电源,提升废气NO x 处理量;优化反应器结构,提升脱硝的效率与选择性;设计与构筑适宜于DBD环境的脱硝催化剂;深入全面分析DBD协同催化剂脱硝机理。

关 键 词:介质阻挡放电  催化剂  填充床  选择性  脱硝机理  
收稿时间:2022-03-08

Research progress of NO x removal by combination of atmospheric pressure dielectric barrier discharge and catalysis
ZHANG Wei,WANG Zongyu,GUO Yu,YANG Mengfei,LI Zhengkai,CHANG Chao,ZHANG Jifeng,JI Yulong.Research progress of NO x removal by combination of atmospheric pressure dielectric barrier discharge and catalysis[J].Chemical Industry and Engineering Progress,2022,41(12):6644-6655.
Authors:ZHANG Wei  WANG Zongyu  GUO Yu  YANG Mengfei  LI Zhengkai  CHANG Chao  ZHANG Jifeng  JI Yulong
Affiliation:1.Marine Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
2.Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, Zhejiang, China
Abstract:Driven by the concept of green ecology and sustainable development strategy, exhaust emissions to the environment has attracted much attention. As one of the main pollutants of exhaust gas, NO x is the focus and difficulty of exhaust gas pollutant control. The advantages, disadvantages and application status of traditional post-treatment de-NO x technologies are introduced. The basic researches of dielectric barrier discharge are reviewed. The synergistic de-NO x performance and mechanism by DBD and catalyst are analyzed. It is pointed out that:①the DBD power supply and the reactor structure are the key factors restricting the de-NO x performance; ②the de-NO x performance of DBD only is not satisfactory, but the combination of DBD with catalytic packed bed exhibits excellent de-NO x efficiency and high N2 selectivity; ③the researches on de-NO x mechanism of plasma-assisted catalyst mainly include plasma characteristic parameter diagnosis, fluid model verification, plasma propagation mechanism analysis and in-situ characterization. However, the research on the theoretical calculation of plasma catalysis is limited. Therefore, we propose that the future development of DBD de-NO x technology should be based on ①the high-power and high-efficiency power supply to improve the NO x treatment capacity; ②the reactor structure optimization to improve the de-NO x efficiency and N2 selectivity; ③suitable design and construct of the de-NO x catalyst for DBD environment; ④the comprehensive analysis of the de-NO x mechanism of DBD synergistic catalyst.
Keywords:dielectric barrier discharge  catalyst  packed bed  selectivity  de-NO x mechanism  
点击此处可从《化工进展》浏览原始摘要信息
点击此处可从《化工进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号