首页 | 本学科首页   官方微博 | 高级检索  
     


Dependence of Microstructure Evolution and Mechanical Properties on Loading Direction for AZ31 Magnesium Alloy Sheet with Non-basal Texture During In-Plane Uniaxial Tension
Authors:Li Hu  Mingao Li  Qiang Chen  Tao Zhou  Laixin Shi  Mingbo Yang
Affiliation:1.College of Material Science and Engineering, Chongqing University of Technology, Chongqing 400054, China;2.Southwest Technology and Engineering Research Institute, Chongqing 400039, China
Abstract:In-plane uniaxial tension of AZ31 magnesium alloy sheet with non-basal texture has been conducted in order to demonstrate the effects of loading direction on the microstructure evolution and mechanical properties at ambient temperature. Loading axes are chosen to be along five directions distributed between rolling direction (RD) and transverse direction (TD), allowing various activities in involved slip and twinning modes to take place. As for twinning modes, electron backscattered diffraction observations confirm that the contribution of ${{\{ 10\overline{1}1\} }}$ compression twinning is minimal to the plastic deformation of all deformed samples. By comparison, ${{\{ 10\overline{1}2\} }}$ extension twinning (ET) not only serves as an important carrier on sustaining and accommodating plastic strain but also contributes to the emergence of TD-component texture with the progression of plastic strain. In terms of slip modes, analysis on Schmid factor demonstrates that the increasing tilted angle between loading direction and RD of sheet is unfavorable to the activation of basal <a> slip, whereas it contributes to the activation of prismatic <a> slip. These observations consequently explain the increasing tendency of 0.2% proof yield stress. Moreover, the activations of basal <a> slip and ${{\{ 10\overline{1}2\} }}$ ET collectively contribute to the concentration of two tilted basal poles toward normal direction. With increasing angle between loading direction and RD, the activations of basal <a> slip and ${{\{ 10\overline{1}2\} }}$ ET are gradually weakened. This leads to a weakening tendency about concentration of two tilted basal poles, a generally increasing tendency about Lankford value (r-value) and a generally decreasing tendency about strain-hardening exponent (n-value).
Keywords:AZ31 magnesium alloy  Non-basal texture  Plastic deformation  Microstructure evolution  
点击此处可从《金属学报(英文版)》浏览原始摘要信息
点击此处可从《金属学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号