首页 | 本学科首页   官方微博 | 高级检索  
     


A multi-functional Ru Mo bimetallic catalyst for ultra-efficient C3 alcohols production from liquid phase hydrogenolysis of glycerol
Authors:Guoxiao Cai  Wei Xiong  Susu Zhou  Pingle Liu  Yang Lv  Fang Hao  Hean Luo  ChangYi Kong
Affiliation:1. College of Chemical Engineering, National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, Xiangtan University, Xiangtan 411105, China;2. Department of Environment and Energy System, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
Abstract:Ru and Mo bimetallic catalysts supported on active carbon modified by phosphotungstic acid (PW) were designed and applied in glycerol hydrogenolysis reaction. The physicochemical properties of the catalysts were characterized and the presence of active sites was investigated from the perspective of the glycerol hydrogenolysis performance. The MoOx is highly selective for the C—O bond cleavage of glycerol molecules, which can reasonably regulate the strong C—C bond cleavage activity of Ru nanoparticles. By using sequential deposition of Ru and Mo supported on mesoporous PW-C, the characterization results show that the combination of isolated low-valence MoOx with metal Ru particles can form “MoOx-Ru-PW”, which provides highly catalytic activity toward C—O bond cleavage, selectively producing more C3 alcohols (mainly 1,2(3)-propanediol). The glycerol conversion of 1% Mo/Ru/PW-C catalyst was 59.6%, the selectivity of C3 alcohol was 96.1%, and the selectivity of propanediol (1,2(3)-propanediol) was 94.9%. It is noteworthy that the selectivity of 1,3-propanediol reached 20.7% when the PW was 21.07% (mass). This study provides experimental evidence for the tandem dehydration and hydrogenation mechanism of the multifunctional Mo/Ru/PW-C catalyst.
Keywords:Heterogeneous catalysis  Bimetallic catalyst  Glycerol hydrogenolysis  Ruthenium  Molybdenum  Phosphotungstic acid  
点击此处可从《中国化学工程学报》浏览原始摘要信息
点击此处可从《中国化学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号