首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进分水岭及区域合并的图像分割方法
引用本文:杨海峰. 基于改进分水岭及区域合并的图像分割方法[J]. 微计算机应用, 2007, 28(11): 1132-1137
作者姓名:杨海峰
作者单位:中国人民解放军61081部队,北京,100094
摘    要:改进了基于地形学距离的分水岭算法,提出了一种结合了图像灰度、边缘信息与信息熵的图像分割方法。首先利用改进的分水岭算法将图像分成多个小区域,根据各个区域之间的临接关系,建立RAG;其次,利用提出的区域相似度合并区域;最后根据最大熵准则停止合并过程,获取最终的分割结果。实验结果表明,与改进前的分水岭算法相比,该方法边缘定位更加准确。与k-mean和基于边缘的分割方法相比,能够较好地分割出图像的细节,同时分割结果也更加符合人的视觉特性。

关 键 词:图像分割  分水岭  区域熵  区域合并
修稿时间:2006-09-20

A Image Segmentation Method Based on Improved Watershed Algorithm and Region Merging
YANG Haifeng. A Image Segmentation Method Based on Improved Watershed Algorithm and Region Merging[J]. Microcomputer Applications, 2007, 28(11): 1132-1137
Authors:YANG Haifeng
Affiliation:61081 unit,PLA, Beijing, 100094,China
Abstract:The paper proposed a improved algorithm of watershed by topographical distance and a scheme for image segmentation based on grayscale ,edge information and information entropy, First ,an image is separated into a large number of small partitions by a improved watershed algorithm and a RAG is built according to the adjacent relationship among partitions ; second , region merging is performed on the basis of a region similarity ; finally, the maximal total entropy criterion is used to stop region merging and gain the final segmentation result. The result show that comparing with a original watershed algorithm , the edge position of the new method is more accurate and the image segmentation result of the proposed approach is more consistent with human vision properties with more detail information of the image than that by the k - mean and a technique based on edges,
Keywords:image segmentation   watershed  region entropy  region merging
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号