首页 | 本学科首页   官方微博 | 高级检索  
     


Fatigue crack growth through a residual stress field introduced by plastic beam bending
Authors:K. W. JONES  M. L. DUNN
Affiliation:Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309‐0427, USA
Abstract:We present predictions and measurements of fatigue crack growth rates in plastically bent aluminium 2024‐T351 beams. Beam bending and fatigue were carefully controlled to minimize factors other than residual stress that could affect the fatigue crack growth rate, such as large plastic strains or residual stress relaxation. The residual stress introduced by bending was characterized by a bending method and by the slitting method, with excellent agreement between the two methods. Crack growth rates were predicted by three linear elastic fracture mechanics (LEFM) superposition based methods and compared to experimental measurements. The prediction that included the effects of partial crack closure correlated with experimental data to within the variability normally observed in fatigue crack growth rate testing of nominally residual stress free material. Therefore, we conclude that crack growth through residual stress fields may be predicted using the concept of superposition as accurately as crack growth through residual stress free material, provided that the residual stress is accurately known, the residual stress remains stable during fatigue, the material properties are not changed by the introduction of residual stress, and that the effect, if any, of partial crack closure is taken into account.
Keywords:fatigue crack growth  partial crack closure  residual stress  slitting method  stress intensity factor  superposition
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号