首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental study on SO2 recovery using a sodium-zinc sorbent based flue gas desulfurization technology
Authors:Yang Zhang  Tao Wang  Hairui Yang  Hai Zhang  Xuyi Zhang
Affiliation:1.Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China;2.National Engineering Laboratory of Coal-Fired Pollution Reduction, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
Abstract:A sodium–zinc sorbent based flue gas desulfurization technology (Na–Zn-FGD) was proposed based on the experiments and analyses of the thermal decomposition characteristics of CaSO3 and ZnSO3·2.5H2O, the waste products of calcium-based semi-dry and zinc-based flue gas desulfurization (Ca–SD-FGD and Zn–SD-FGD) tech-nologies, respectively. It was found that ZnSO3·2.5H2O first lost crystal H2O at 100 °C and then decomposed into SO2 and solid ZnO at 260 °C in the air, while CaSO3 is oxidized at 450 °C before it decomposed in the air. The ex-perimental results confirm that Zn–SD-FGD technology is good for SO2 removal and recycling, but with problem in clogging and high operational cost. The proposed Na–Zn-FGD is clogging proof, and more cost-effective. In the new process, Na2CO3 is used to generate Na2SO3 for SO2 absorption, and the intermediate product NaHSO3 reacts with ZnO powders, producing ZnSO3·2.5H2O precipitate and Na2SO3 solution. The Na2SO3 solution is clogging proof, which is re-used for SO2 absorption. By thermal decomposition of ZnSO3·2.5H2O, ZnO is re-generated and SO2 with high purity is co-produced as well. The cycle consumes some amount of raw material Na2CO3 and a small amount of ZnO only. The newly proposed FGD technology could be a substitute of the traditional semi-dry FGD technologies.
Keywords:Flue gas desulfurization  Waste treatment  ZnSO3·2.5H2O pyrolysis  Sodium-zinc sorbent based  SO2 co-production
本文献已被 万方数据 等数据库收录!
点击此处可从《中国化学工程学报》浏览原始摘要信息
点击此处可从《中国化学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号