首页 | 本学科首页   官方微博 | 高级检索  
     


A finite element investigation of quasi-static and dynamic asymptotic crack-tip fields in hardening elastic-plastic solids under plane stress
Authors:Xiaomin Deng  Ares J Rosakis
Affiliation:(1) California Institute of Technology, 91125 Pasadena, California, USA;(2) Present address: Department of Mechanical Engineering, University of South Carolina, 29208 Columbia, South Carolina, USA
Abstract:This is the second half of a two-part finite element investigation of quasi-static and dynamic crack growth in hardening elastic-plastic solids under mode I plane stress, steady state, and small-scale yielding conditions. The hardening materials are assumed to obey the von Mises yield criterion and the associated flow rule, and are characterized by a Ramberg-Osgood type power-law effective stress-strain curve. The asymptotic feature of the crack-tip stress and deformation fields, and the influence of hardening and crack propagation speed on these fields as well as on the size and shape of the crack-tip active plastic zone, are addressed in detail. The results of this study strongly suggest the existence of stress and strain singularities of the type ln(R o/r )]s (s>0) at r=0, where r is the distance to the crack tip and R 0 is a length scaling parameter, which is consistent with the predictions of asymptotic analyses of variable-separable type by Gao et al. 1–4]. Difficulties in estimating the values of R 0 and s by fitting the results of the present full-field study to the type of singularities shown above are analyzed, and quantititive differences between the results of this study and those of the asymptotic analyses are discussed. As expected, findings presented here share many similarities with those reported in the first part of this study 5] for crack growth in linear hardening solids. A prominent common feature of crack growth in these two types of hardening materials is that as the level of hardening decreases and the crack propagation speed increases, a secondary yield zone emerges along the crack surface, and kinks in the angular variations of the stress and velocity fields begin to develop near where elastic unloading is taking place.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号