首页 | 本学科首页   官方微博 | 高级检索  
     

基于GAN的无监督域自适应行人重识别
引用本文:郑声晟,殷海兵,黄晓峰,章天杰. 基于GAN的无监督域自适应行人重识别[J]. 电信科学, 2021, 37(2): 99-106
作者姓名:郑声晟  殷海兵  黄晓峰  章天杰
作者单位:杭州电子科技大学通信工程学院,浙江杭州 310018;杭州电子科技大学通信工程学院,浙江杭州 310018;杭州电子科技大学通信工程学院,浙江杭州 310018;杭州电子科技大学通信工程学院,浙江杭州 310018
摘    要:
针对无监督域自适应行人重识别中存在的聚类不准确导致网络识别准确率低的问题,提出一种基于生成对抗网络的无监督域自适应行人重识别方法。首先通过在池化层后使用批量归一化层、删除一层全连接层和使用Adam优化器等方法优化CNN模型;然后基于最小错误率贝叶斯决策理论分析聚类错误率和选择聚类关键参数;最后利用生成对抗网络调整聚类,有效提升了无监督域自适应行人重识别的识别准确率。在源域Market-1501和目标域DukeMTMC-reID下进行实验,mAP和Rank-1分别达到了53.7%和71.6%。

关 键 词:无监督域自适应  行人重识别  生成对抗网络

GAN-based unsupervised domain adaptive person re-identification
ZHENG Shengsheng,YIN Haibing,HUANG Xiaofeng,ZHANG Tianjie. GAN-based unsupervised domain adaptive person re-identification[J]. Telecommunications Science, 2021, 37(2): 99-106
Authors:ZHENG Shengsheng  YIN Haibing  HUANG Xiaofeng  ZHANG Tianjie
Affiliation:(College of Communication Engineering,Hangzhou Dianzi University,Hangzhou 310018,China)
Abstract:
Aiming at the problem that the inaccurate clustering in the unsupervised domain adaptive pedestrian re-recognition results in low network recognition accuracy,an unsupervised domain adaptive pedestrian re-recognition method based on generative confrontation network was proposed.Firstly,the CNN model was optimized by using the batch normalization layer after the pooling layer,deleting a fully connected layer and adopting the Adam optimizer.Secondly,the cluster error was analyzed and the important parameter in the cluster was decided based on minimum error rate Bayesian decision theory.Finally,the generative adversarial network was utilized to adjust the cluster.These steps effectively improved the recognition accuracy of unsupervised domain adaptive person re-identification.In the case of the source domain Market-1501 and the target domain DukeMTMC-reID,experimental results show that mAP and Rank-1 can reach 53.7%and 71.6%,respectively.
Keywords:unsupervised domain adaptive  person re-identification  generative adversarial network
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号