首页 | 本学科首页   官方微博 | 高级检索  
     

人工神经网络和响应面法优化薏苡仁酒发酵条件
引用本文:邹立飞,郑鹏. 人工神经网络和响应面法优化薏苡仁酒发酵条件[J]. 中国酿造, 2021, 40(1): 142-147. DOI: 10.11882/j.issn.0254-5071.2021.01.027
作者姓名:邹立飞  郑鹏
作者单位:(1.兴义民族师范学院 生物与化学学院,贵州 兴义 562400;2.华南农业大学 园艺学院,广东 广州 510642)
基金项目:贵州省教育厅青年科技人才成长项目(黔教合KY字[2017]371)。
摘    要:采用Box-Behnken试验设计对薏苡仁酒的发酵条件进行优化,并对Box-Behnken(BB)试验结果分别进行响应面法(RSM)和人工神经网络(ANN)分析。结果表明,RSM、ANN优化发酵条件分别为薏苡仁∶糯米为1∶2(g∶g)、酵母A1接种量为4.7%、温度为31.7 ℃、初始pH为3.0;薏苡仁∶糯米为1∶1.9(g∶g)、酵母A1接种量为4.2%、温度为28.1 ℃、初始pH为3.0,ANN、RSM分别在其最优条件下的实际值和预测值都基本一致。ANN、RSM拟合模型的相关系数(R)、决定系数(R2)、均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)分别为0.994 5、0.988 9、0.011 7、0.108 4、0.072 2、0.486 3%和0.983 6、0.967 5、0.028 9、0.170 1、0.143 7、0.985 7%。ANN具有更高拟合能力和准确性,拟合效果更好,更适合应用于薏苡仁酒发酵条件优化。

关 键 词:人工神经网络  响应面法  薏苡仁酒  发酵条件  优化  

Optimization of fermentation conditions of coix seed wine by artificial neural network and response surface method
ZOU Lifei,ZHENG Peng. Optimization of fermentation conditions of coix seed wine by artificial neural network and response surface method[J]. China Brewing, 2021, 40(1): 142-147. DOI: 10.11882/j.issn.0254-5071.2021.01.027
Authors:ZOU Lifei  ZHENG Peng
Affiliation:(1.College of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi 562400, China; 2.College of Horticulture, South China Agricultural University, Guangzhou 510642, China)
Abstract:The fermentation conditions of coix seed wine were optimized by Box-Behnken(BB)experiments,and the results were analyzed by response surface methodology(RSM)and artificial neural network(ANN).The results showed that the optimal fermentation conditions optimized by RSM were coix seed:glutinous rice 1∶2(g∶g),yeast A1 inoculum 4.7%,temperature 31.7℃,and initial pH 3.0.The optimal fermentation conditions optimized by ANN were coix seed:glutinous rice 1∶1.9(g∶g),yeast A1 inoculum 4.2%,temperature 28.1℃,and initial pH 3.0,respectively.At the same time,the actual and predicted values of ANN and RSM under their optimal conditions were almost the same.The correlation coefficient R,coefficient of determination(R2),mean-square error(MSE),root mean square error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE)correlation coefficients of the artificial neural network fitting model and the response surface methodology were 0.9945,0.9889,0.0117,0.1084,0.0722,0.4863%and 0.9836,0.9675,0.0289,0.1701,0.1437,0.9857%,respectively.Overall,the artificial neural network had higher fitting ability and accuracy than the response surface methodology and generated better fitting effect.Furthermore,the artificial neural network was more suitable for the optimization of fermentation condition of coix seed wine.
Keywords:artificial neural network  response surface methodology  coix seed wine  fermentation condition  optimization
本文献已被 维普 等数据库收录!
点击此处可从《中国酿造》浏览原始摘要信息
点击此处可从《中国酿造》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号