首页 | 本学科首页   官方微博 | 高级检索  
     

结合Attention-ConvLSTM的双流卷积行为识别
引用本文:揭志浩,曾明如,周鑫恒,何强. 结合Attention-ConvLSTM的双流卷积行为识别[J]. 小型微型计算机系统, 2021, 0(2): 405-408
作者姓名:揭志浩  曾明如  周鑫恒  何强
作者单位:南昌大学信息工程学院
基金项目:国家自然科学基金项目(61963027)资助.
摘    要:针对传统方法在通过视频数据进行人体行为识别的过程中,无法准确分析长时间范围的运动信息,不能很好地利用运动信息中的局部特征和其空间关系.提出将基于注意力机制的卷积长短时记忆神经网络(Attention-ConvLSTM)与传统的双流卷积进行结合,实现了对视频数据中运动信息的非线性特征更好的学习,对局部显著特征及其空间关系...

关 键 词:人体行为识别  双流卷积  注意力机制  卷积长短时记忆神经网络

Two Stream CNN with Attention-ConvLSTM on Human Behavior Recognition
JIE Zhi-hao,ZENG Ming-ru,ZHOU Xin-heng,HE Qiang. Two Stream CNN with Attention-ConvLSTM on Human Behavior Recognition[J]. Mini-micro Systems, 2021, 0(2): 405-408
Authors:JIE Zhi-hao  ZENG Ming-ru  ZHOU Xin-heng  HE Qiang
Affiliation:(Information Engineering College,Nanchang University,Nanchang 330031,China)
Abstract:In the process of human behavior recognition based on video data,traditional methods can't accurately analyze the motion information in a long time range,and can't make good use of the local features and their spatial relations in the motion information.In this paper,the convolution long-term memory neural network(Attention-ConvLSTM)based on attention mechanism is combined with the traditional two stream convolution to realize better learning of the non-linear features of motion information in video data,and to make better use of the local salient features and their spatial relations.This paper also designs a new regularized cross-entropy loss function,which makes the extended neural network achieve faster convergence.Compared with the traditional methods,the performance of our method in UCF101 and HMDB51 is significantly improved.
Keywords:human behavior recognition  Two-stream CNN  attention mechanism  ConvLSTM
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号