首页 | 本学科首页   官方微博 | 高级检索  
     

结合LSTM的强化学习动态环境路径规划算法
引用本文:武曲,张义,郭坤,王玺. 结合LSTM的强化学习动态环境路径规划算法[J]. 小型微型计算机系统, 2021, 0(2): 334-339
作者姓名:武曲  张义  郭坤  王玺
作者单位:青岛理工大学信息与控制工程学院
基金项目:山东省自然科学基金项目(ZR2017BF043)资助.
摘    要:在路径规划领域已经涌现出了诸多的优秀的经典算法,但这些传统方法往往基于静态环境,对于动态可变环境缺乏处理能力.本文提出一种结合LSTM强化学习动态环境路径规划算法.首先,本文以环境图像作为输入,最大限度了保证了原始的信息来源.而后构建了自动编码器用来对环境图像进行特征降维,降低了整体模型的复杂程度.最后采用深度强化学习...

关 键 词:自动编码器  LSTM  DDPG  强化学习  动态路径规划

LSTM Combined with Reinforcement Learning Dynamic Environment Path Planning Algorithm
WU Qu,ZHANG Yi,GUO Kun,WANG Xi. LSTM Combined with Reinforcement Learning Dynamic Environment Path Planning Algorithm[J]. Mini-micro Systems, 2021, 0(2): 334-339
Authors:WU Qu  ZHANG Yi  GUO Kun  WANG Xi
Affiliation:(School of Information and Control Engineering,Qingdao University of Technology,Qingdao 266520,China)
Abstract:Many excellent classical algorithms have emerged in the field of path planning,but these traditional methods are often based on static environment and lack processing power for dynamic variable environment.This paper proposes a path planning algorithm for dynamic environment based on LSTM reinforcement learning.First of all,this paper takes the environment image as the input to ensure the original information source to the maximum extent.Then an Autoencoder is built to reduce the dimension of environment image,which reduces the complexity of the whole model.At last,the deep reinforcement learning algorithm DDPG is used for path planning,and the Actor part uses LSTM network,so that the Actor can refer to the prior information and make decisions with the prediction of environment change.Finally,the feasibility and efficiency of the proposed algorithm are proved by experiments.
Keywords:autoencoder  LSTM  DDPG  reinforcement learning  dynamic path planning
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号