首页 | 本学科首页   官方微博 | 高级检索  
     


Monte Carlo cluster refinement for noise robust image segmentation
Authors:Alexander Wong  Xiao Yu Wang
Affiliation:University of Waterloo, Waterloo, ON, Canada
Abstract:This paper explores a stochastic approach to refining clustering results for data with spatial-feature context such as images under the presence of noise. We formulate the clustering problem as a maximum a posteriori (MAP) problem, and refine clustering results using importance-weighted Monte Carlo posterior estimates based on between-neighborhood error statistics to account for local spatial-feature context within a global framework. This cluster refinement approach is non-iterative and can be integrated with existing clustering methods to achieve improved clustering performance for image segmentation under high noise scenarios. Experiments on synthetic gray-level images, real-world natural images, and real-world satellite synthetic aperture radar imagery illustrate the proposed method’s potential for improving clustering performance of existing clustering algorithms for image segmentation under high noise situations.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号