首页 | 本学科首页   官方微博 | 高级检索  
     


Unassisted water splitting with 9.3% efficiency by a single quantum nanostructure photoelectrode
Affiliation:1. Department of Science and Technology (ITN), Campus Norrköping, Linköping University, 60174, Sweden;2. Department of Analytical Chemistry, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain;3. Department of Chemistry, Bahauddin Zakariya University, 60000, Multan, Pakistan;4. South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China;1. GeePs, UMR8507, CNRS, CentraleSupélec, UPsud, UPMC, 11 Rue Joliot-Curie, 91192 Gif-sur-Yvette cedex, France;2. Université Pierre et Marie Curie, UPMC, 4 Place Jussieu, 75005 Paris, France;3. Département des Sciences Physiques, UVSQ, 45 Avenue des tats-Unis, 78035 Versailles, France;4. Georgia Tech Lorraine, Georgia Tech-CNRS, UMI2958, 57070 Metz, France;5. School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250, USA;6. Université de Lorraine and CentraleSupelec, LMOPS, EA4423, 57070 Metz, France;1. Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France;2. Centre de Nanosciences et de Nanotechnologies, Campus de Marcoussis, CNRS, Université Paris-Saclay, Route de Nozay, F-91460 Marcoussis, France;1. Department of Physics, University of Zanjan, Zanjan, 45371-38791, Iran;2. Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia;3. Computation Nanotechnology Research Lab (CNRL), Department of Physics, College of Education, Salahaddin University-Erbil, 44002, Erbil, Kurdistan Region, Iraq;4. Physics Education Department, Faculty of Education, Tishk International University, 44001, Erbil, Iraq;5. Micro-Nano System Centre, School of Information Science & Technology, Fudan University, Shanghai, 200433, China;1. Center for Physical Sciences and Technology, Institute of Chemistry, A. Go?tauto 9, LT-01108 Vilnius, Lithuania;2. Institute of Applied Research, Vilnius University, LT-10222 Vilnius, Lithuania;3. Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;4. Melbourne Centre for Nanofabrication (MCN), Australian National Fabrication Facility, Clayton, VIC 3168, Australia
Abstract:To split water and produce hydrogen by white light is an excellent solution for the storage and supply of clean and sustainable energy. Efficiency and stability are the key challenges for a successful exploitation. InGaN, evaluated against other semiconductors, metal oxides, carbon based - and organic materials has most suited intrinsic materials properties. Based on this optimum materials choice we report photoelectrochemical (PEC) hydrogen generation under white light illumination by an InGaN-based quantum nanostructure photoelectrode. No degradation occurs for operation over 10 h. Our novel concept, combining quantum nanostructure physics with electrochemistry and catalysis leads to almost 10% efficiency at zero external voltage. The efficiency rises above 25% at 0.2 V. This is unmatched for a single photoelectrode, representing the most advanced technology of low complexity.
Keywords:InN quantum dots  InGaN nanowalls  Photoelectrode  Unassisted  Water splitting  Hydrogen production
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号