首页 | 本学科首页   官方微博 | 高级检索  
     


Transition metal/carbon nanoparticle composite catalysts as platinum substitutes for bioelectrochemical hydrogen production using microbial electrolysis cells
Affiliation:1. School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea;2. Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore;3. Global Desalination Research Center, School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea;4. Department of Biological Environment, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea;5. Department of Environmental Engineering, Korea Maritime and Ocean University, Taejong-ro, Yeongdo-Gu, Busan, 49112, Republic of Korea;1. College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China;2. Department of Environmental Engineering, Taiyuan College, Taiyuan 030032, China;1. Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamilnadu, 620015, India;2. Renewable Energy Laboratory, Department of Civil Engineering, Hindustan Institute of Technology & Science, Padur, Chennai, Tamilnadu, 603103, India
Abstract:Various metal nanoparticle catalysts supported on Vulcan XC-72 and carbon-nanomaterial-based catalysts were fabricated and compared and assessed as substitutes of platinum in microbial electrolysis cells (MECs). The metal-nanoparticle-loaded cathodes exhibited relatively better hydrogen production and electrochemical properties than cathodes coated with carbon nanoparticles (CNPs) and carbon nanotubes (CNTs) did. Catalysts containing Pt (alone or mixed with other metals) most effectively produced hydrogen in terms of overall conversion efficiency, followed by Ni alone or combined with other metals in the order: Pt/C (80.6%) > PtNi/C (76.8%) > PtCu/C (72.6%) > Ni/C (73.0%) > Cu/C (65.8%) > CNPs (47.0%) > CNTs (38.9%) > plain carbon felt (38.7%). Further, in terms of long-term catalytic stability, Ni-based catalysts degraded to a lesser extent over time than did the Cu/C catalyst (which showed the maximum degradation). Overall, the hydrogen generation efficiency, catalyst stability, and current density of the Ni-based catalysts were almost comparable to those of Pt catalysts. Thus, Ni is an effective and inexpensive alternative to Pt catalysts for hydrogen production by MECs.
Keywords:Biohydrogen  Catalyst  Carbon nanomaterials  Nickel  Microbial electrolysis cell  MEC"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0040"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  microbial electrolysis cell  CNP"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0050"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  carbon nanoparticle  CNT"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0060"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  carbon nanotube  MEA"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0070"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  membrane electrode assembly  LSV"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0080"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  linear sweep voltammetry  DCPA"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0090"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  DC potential amperometry  TCD"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0100"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  thermal conductivity detector  TEM"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0110"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  transmission electron microscopy  SEM"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0120"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  scanning electron microscopy  BET"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0130"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Brunauer–Emmer–Teller  CE"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0140"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Coulombic efficiency  CCE"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0150"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  cathodic conversion efficiency  OCE"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0160"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  overall hydrogen conversion efficiency
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号