首页 | 本学科首页   官方微博 | 高级检索  
     


Facile synthesis of carbon encapsulated RuO2 nanorods for supercapacitor and electrocatalytic hydrogen evolution reaction
Affiliation:1. Department of Nanobiosciences, Centre for Emerging Technologies, Jain Global Campus, Jain University, Jakkasandra post, Kanakapura Taluk, Ramanagara District, Bangalore Rural 562112, Karnataka, India;2. Naval Materials Research Laboratory, Shill Badlapur Road, Anand Nagar, Ambernath 421506, Maharashtra, India;3. Department of Chemistry, St. Joseph''s College, P.G. Centre. 46, Langford Road, Shanthinagar 560027, Karnataka, India
Abstract:In this work, carbon encapsulated RuO2 nanorods (RuO2 NRs/C) has been synthesized by thermolysis of ruthenium chloride and Punica granatum (P. granatum) peel under N2 atmosphere. The synthesized RuO2 NRs/C was characterized using Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction method (XRD), field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM) with energy dispersive spectroscopy (EDS) analyses. The FT-IR results suggested that the organic constituents of P. granatum have been carbonized and encapsulated over RuO2 nanorods (RuO2 NRs). The XRD pattern of RuO2 NRs/C revealed its crystalline nature and carbon encapsulation. The synthesized RuO2 NRs/C has been well dispersed with the average width of 20 nm, exposed from the FE-SEM and HR-TEM images. The EDS results of RuO2 NRs/C showed the existence of three elements viz., Ru, O and C. Further, the supercapacitor and electrocatalytic hydrogen evolution reaction (HER) activities of RuO2 NRs/C were studied using standard electrochemical methods. The synthesized RuO2 NRs/C offered a maximum specific capacitance of 151.3 F g−1 at a scan rate of 5 mV s−1, obtained from the cyclic voltammetry results. The onset over potential and Tafel slope of synthesized RuO2 NRs/C for HER were −0.099 VRHE and −99.4 mV dec−1, respectively. The present study revealed that RuO2 NRs/C as a better candidate for supercapacitor and HER.
Keywords:Thermolysis  Supercapacitor  Electrocatalyst  Hydrogen evolution reaction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号