首页 | 本学科首页   官方微博 | 高级检索  
     


Entropy optimized CNTs based Darcy-Forchheimer nanomaterial flow between two stretchable rotating disks
Affiliation:1. Department of Mathematics, Quaid-I-Azam University 45320, Islamabad, 44000, Pakistan;2. Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80257, Jeddah 21589, Saudi Arabia;3. Heriot Watt University, Edinburgh Campus, Edinburgh, EH14 4AS, United Kingdom;1. Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan;2. Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;1. Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan;2. Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Abstract:Here entropy optimized CNTs based flow of viscous liquid is addressed between two stretchable surfaces of disks. Both upper and lower disks stretch and rotate with different rates and angular frequencies. Carbon nanotubes (single and multi-walls) are considered as a nanoparticles and water as continuous phase liquid. Xue model is utilized in the mathematical modeling for the transport of nanoparticles. Energy expression is developed through first law of thermodynamics and discussed in the presence of viscous dissipation. Main attention is given to the modeling of entropy generation subject to CNTs nanoparticles. Total entropy rate is calculated. Average residual error is calculated through implementation of optimal homotopy analysis method. Flow parameters are graphically discussed for both single and multi-walls carbon nanotubes. Furthermore, engineering quantities like skin friction and Nusselt number are numerical calculated and discussed through Tables. From obtained outcomes it is examined that entropy rate boosts up versus larger Brinkman number and nanoparticles volume friction. No such attempt is yet done by the researchers on entropy optimized Darcy-Forchheimer CNTs based nanomaterial flow between two rotating disks. The obtained outcomes are compared with published literature and found good agreement.
Keywords:Carbon nanotubes  Darcy-Forchheimer medium  Entropy generation  Viscous dissipation  Two stretchable rotating disks
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号