首页 | 本学科首页   官方微博 | 高级检索  
     


Application of hydrides in hydrogen storage and compression: Achievements,outlook and perspectives
Affiliation:1. Department of Nanotechnology, Helmholtz-Zentrum Geesthacht, Max-Plank-Str. 59, 21502 Geesthacht, Germany;2. Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain;3. Laboratory of Materials for Renewable Energy (LMER), Institute of Chemical Sciences and Engineering (ISIC), Basic Science Faculty (SB), École Polytechnique Fédérale de Lausanne (EPFL) Valais/Wallis, Energypolis, Sion, Switzerland;4. Empa Materials Science & Technology, Dübendorf, Switzerland;5. GRZ Technologies Ltd., Rue de l’Industrie 17, 1950 Sion, Switzerland;6. Department of Physics and Astronomy, Fuels and Energy Technology Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia;7. Department of Chemistry, Aarhus University, Langelandsgade 140, Building 1512, 316, 8000 Aarhus C, Denmark;8. ENEA, Materials Technology Division, Research Centre of Casaccia, Via Anguillarese,301, 00123 Rome, Italy;9. Chemistry Department and NIS, University of Turin, Via Pietro Giuria, 7, 10125, Torino, Italy;10. Advanced Materials Research Group, Faculty of Engineering, Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK;11. Department of Technology Systems, University Oslo, P.O. Box 70, NO-2027 Kjeller, Norway;12. Department of Physicochemistry of Materials, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Centro Atómico Bariloche, Av. Bustillo km 9500 S.C. de Bariloche, Argentina;13. Institute for Energy Technology, Kjeller, NO-2027, Norway;14. Faculty of Engineering Sciences, Ben-Gurion University of the Negev, P.O.B. 653 Beer-Sheva, Israel;15. Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Australia;p. HySA Systems (Hydrogen South Africa), University of the Western Cape, Bellville, 7535, South Africa
Abstract:Metal hydrides are known as a potential efficient, low-risk option for high-density hydrogen storage since the late 1970s. In this paper, the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s, interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage, metal hydride systems have been developed in the 2010s 1] for use in emergency or backup power units, i. e. for stationary applications.With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004, the use of metal hydrides for hydrogen storage in mobile applications has been established, with new application fields coming into focus.In the last decades, a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more, partly less extensively characterized.In addition, based on the thermodynamic properties of metal hydrides, this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover, storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles.In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage”, different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications.
Keywords:Hydrogen storage  Hydrogen compression  Metal hydrides
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号