首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of compaction method on the structure and properties of bulk Cu + Cr3C2 composites
Authors:M. A. Eremina  S. F. Lomaeva  S. N. Paranin  S. L. Demakov  E. P. Elsukov
Abstract:Cu + Cr3C2 composites have been produced using the mechanical alloying of the elemental components, followed by severe plastic deformation by torsion, magnetic-pulse pressing, and electric-pulse plasma sintering. The composites are studied using X-ray diffraction and light and electron microscopy, as well as measurements of the hardness, density, and electric conductivity. Magnetic-pulse pressing at a temperature of 500°C makes it possible to produce volume nanocomposites with a homogeneous distribution of dispersed carbides over the copper matrix, which has a density of 96%, a Vickers microhardness of 4.6 GPa, a Rockwell hardness of 69 HRA, and an electric conductivity of 19% IACS units. Using electric-pulse plasma sintering at a temperature of 700°C, composites with the nanostructured copper matrix, which contains carbide inclusions and consists of domains surrounded by a layer of nearly pure copper, have been produced. These composites have a density of 88%, a Vickers microhardness of 4.0 GPa, a Rockwell hardness of 58 HRA, and electric conductivity of 26% IACS units.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号