首页 | 本学科首页   官方微博 | 高级检索  
     


Study of the stability of the film casting process
Authors:D Silagy  Y Demay  J-F Agassant
Abstract:A theoretical study of the film casting process has been carried out. In this industrial process, a molten polymer is extruded through a flat die, then stretched in air and cooled on a chill roll. This involves mainly an extensional flow. Between the die and the chill roll, thick edges are formed and a neck-in phenomenon is observed. Above a critical take-up speed, a drawing instability, known as draw resonance, may occur. In this paper, a one-dimensional model adapted from the classical model of the fiber spinning is developed (for a Newtonian or a Maxwell fluid). The influence of the processing parameters (draw ratio, Deborah number, and aspect ratio) on geometry of the lateral free surface (the so-called neck-in phenomenon) is studied. An unattainable zone very similar to the one encountered in fiber spinning is predicted, which only slightly depends on the stretching geometry (initial film width and stretching distance). The onset of draw resonance is studied through the linear stability method. A stability zone, depending on the geometry of the process, the elasticity of the polymer, and the draw ratio, has been obtained. This instability is observed with simultaneous width and thickness film variations. It is proved that the aspect ratio (stretching distance divided by die width) has a strong influence on the onset of the draw resonance instability.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号