首页 | 本学科首页   官方微博 | 高级检索  
     


Deformation und Versagen von StE460 und AlMg4,5Mn bei mehrachsig-proportionalen Beanspruchungen mit konstanten und variablen Amplituden
Authors:G Savaidis  T Seeger
Abstract:Deformation and failure behaviour of FeE460 and AlMg4.5Mn under multiaxial proportional loading with constant and variable amplitudes To calculate the fatigue life-to-crack initiation of engineering components under combined cyclic loading, experimentally secured knowledge on the cyclic deformation and failure behaviour of the materials used under the certain multiaxial cyclic stress and strain conditions are required. To obtain this, strain-controlled fully reversed experimental tests at tensional, torsional and combined loading with constant and variable amplitudes have been conducted using thin-walled tube specimens of FeE460 and AlMg4.5Mn. Experimental tests on standard uniaxially loaded hourglass specimens have also been conducted to study specimen form effects. Cyclic deformation behaviour can be uniformly described by the stabilised cyclic σ-ε-curve, if stresses and strains are expressed as equivalent values according to the von Mises criterion. Failure behaviour at constant and variable amplitude loading is characterized by the initiation and growth of short cracks at right angle to the direction of the greatest principal stress (mode I) in the case of tensional or combined loading and by short crack growing in both shear stress directions (mode II+III) in the case of torsional loading. At fully reversed constant amplitude loading, all three types of load can be described by one constant amplitude strain life-to-crack initiation curve. At variable amplitude loading (notch strain simulation with gaussian spectrum, H0=105), the experimental fatigue life-to-crack initiation values are lower than estimated values based on Miner-calculations using an equivalent stress-strain supported PSWT-N-curve. The question of mean stresses and their evaluation is discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号