首页 | 本学科首页   官方微博 | 高级检索  
     


Sheet extrusion of microcomposites based on thermotropic liquid crystalline polymers and polypropylene
Authors:A A Handlos  D G Baird
Abstract:This work is concerned with the extrusion of sheets from pellets of polypropylene (PP) containing pregenerated microfibrils of thermotropic liquid crystal polymers (TLCPs), referred to as microcomposites. The TLCPs used were HX6000 and Vectra A950. The microcomposites are produced by drawing strands of PP and TLCPs generated by means of a novel mixing technique and pelletizing the strands. The work was undertaken in an effort to improve on the properties for in situ composites in which the TLCP fibrils are generated in contractions in the die and the subsequent drawing step. In situ composites usually exhibit highly anisotropic mechanical properties and the properties do not reflect the full reinforcing potential of the TLCP fibers. Factors affecting the mechanical properties of the composite sheets considered include the effect of in situ composite strand properties and TLCP concentration. In addition, the properties of the extruded sheets are compared to those of microcomposites processed by means of injection molding. It is shown that the sheets produced using microcomposites have a good balance between the machine and transverse direction properties (ratios of these properties ranging from 0.8 to 1.2) and those properties compare well to those obtained by processing microcomposites in injection molding. The tensile modulus of the composite sheets increases with increasing in situ composite strand modulus. The moduli of the 20 wt% Vectra A950 and HX6000 composites are about equal to the modulus of 20 wt% glass reinforced PP (about 2.1 GPa), while the tensile strength of the TLCP reinforced composites is 28% lower than that of the glass reinforced PP. Furthermore, it is shown that the tensile modulus of the 10 wt% TLCP composites approach the predictions of composite theory, while at 20 and 30 wt% TLCP negative deviations from the predictions of composite theory are seen. Finally, it is concluded that the properties of the sheets produced through the extrusion of microcomposites may be further improved by improving the modulus of in situ composite strands and reducing the TLCP fiber diameter.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号