摘 要: | 针对目前遥感图像目标检测算法中存在的误检、漏检和检测精度低等问题,提出了一种改进YOLOv8的遥感图像检测算法。在主干网络中引入注意力机制EMA到C2f模块,以提高模型对多尺度目标的特征提取能力;在颈部网络中提出Slim-PAN结构,以减少模型计算量;使用WIOU损失函数代替CIOU损失函数,以提升模型的检测精度。通过在DIOR和RSOD遥感数据集上的实验结果表明,改进后的算法与原YOLOv8算法相比,mAP分别提升了1.5%和2.3%,计算量降低了0.3 GFLOPs,改进算法在不增加计算量的同时能提高检测精度,证明了改进算法的有效性和先进性。
|