首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of TiN particles and microstructure on fracture toughness in simulated heat-affected zones of a structural steel
Authors:L. P. Zhang  C. L. Davis  M. Strangwood
Affiliation:(1) the School of Metallurgy and Materials, The University of Birmingham, B15 2TT Birmingham, United Kingdom
Abstract:Thermally stable TiN particles can effectively pin austenite grain boundaries in weld heat-affected zones (HAZs), thereby improving toughness, but can also act as cleavage initiators. The HAZs simulated in a GLEEBLE 1500 TCS using two peak temperatures (T p ) and three cooling times (Δ 8/5) have determined the effects of matrix microstructure and TiN particle distribution on the fracture toughness (crack tip opening displacement (CTOD)) of three steels microalloyed with 0.006, 0.045, and 0.1 wt pct Ti. Coarse TiN (0.5 to 6 μm) particles are identified in steels with the two higher levels of Ti, and fine Ti(C, N) (35 to 500 nm) particles were present in all three steels. Large prior austenite grain size caused by higher T p decreased fracture toughness considerably in steels containing coarse TiN particles but had little effect in their absence. Fracture toughness was largely independent of matrix microstructure in the presence of coarse particles. Cleavage fracture initiation was observed to occur at coarse TiN particles in the samples with a large prior austenite grain size. Alloy thermodynamics have been used to rationalize the influence of Ti content on TiN formation and its size.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号