The Yeast ATF1 Acetyltransferase Efficiently Acetylates Insect Pheromone Alcohols: Implications for the Biological Production of Moth Pheromones |
| |
Authors: | Bao-Jian Ding Ida Lager Sunil Bansal Timothy P. Durrett Sten Stymne Christer Löfstedt |
| |
Affiliation: | 1. , Department of Biology, Lund University, Lund, Sweden;2. , Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden;3. , Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, USA |
| |
Abstract: | Many moth pheromones are composed of mixtures of acetates of long‐chain (≥10 carbon) fatty alcohols. Moth pheromone precursors such as fatty acids and fatty alcohols can be produced in yeast by the heterologous expression of genes involved in insect pheromone production. Acetyltransferases that subsequently catalyze the formation of acetates by transfer of the acetate unit from acetyl‐CoA to a fatty alcohol have been postulated in pheromone biosynthesis. However, so far no fatty alcohol acetyltransferases responsible for the production of straight chain alkyl acetate pheromone components in insects have been identified. In search for a non‐insect acetyltransferase alternative, we expressed a plant‐derived diacylglycerol acetyltransferase (EaDAcT) (EC 2.3.1.20) cloned from the seed of the burning bush (Euonymus alatus) in a yeast system. EaDAcT transformed various fatty alcohol insect pheromone precursors into acetates but we also found high background acetylation activities. Only one enzyme in yeast was shown to be responsible for the majority of that background activity, the acetyltransferase ATF1 (EC 2.3.1.84). We further investigated the usefulness of ATF1 for the conversion of moth pheromone alcohols into acetates in comparison with EaDAcT. Overexpression of ATF1 revealed that it was capable of acetylating these fatty alcohols with chain lengths from 10 to 18 carbons with up to 27‐ and 10‐fold higher in vivo and in vitro efficiency, respectively, compared to EaDAcT. The ATF1 enzyme thus has the potential to serve as the missing enzyme in the reconstruction of the biosynthetic pathway of insect acetate pheromones from precursor fatty acids in yeast. |
| |
Keywords: | Acetyltransferase Fatty alcohol Acetates Moth pheromone Yeast expression |
本文献已被 SpringerLink 等数据库收录! |
|