首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal buckling analysis of temperature-dependent FG-CNTRC quadrilateral plates
Authors:R. Ansari  J. Torabi  R. Hassani
Abstract:The main objective of the present study is to analyze the thermal buckling of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) quadrilateral plates. Functionally graded patterns are introduced for the distribution of the carbon nanotubes (CNTs) through the thickness direction of the plate. The effective material properties of nanocomposite plate reinforced by CNTs are considered to be temperature-dependent (TD) and estimated using the micromechanical model. By the use of minimum total potential energy principle and based on the first-order shear deformation theory of plates, the stability equations are obtained. In order to use the generalized differential quadrature (GDQ) method and solve the stability equations, the irregular domain of quadrilateral plate is transformed into regular computational domain employing the mapping technique. The efficiency and accuracy of the proposed approach are first validated. Then, a comprehensive parametric study is presented to examine the effects of model parameters on the thermal buckling of FG-CNTRC quadrilateral plates. The results indicate that considering temperature dependency of the material properties plays an important role in the stability of the FG-CNTRC quadrilateral plates subjected to thermal loading.
Keywords:FG-CNTRC  Quadrilateral plate  Thermal buckling  GDQ method
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号