首页 | 本学科首页   官方微博 | 高级检索  
     


Spectroscopic evidence for interfacial Fe(II)-Fe(III) electron transfer in a clay mineral
Authors:Schaefer Michael V  Gorski Christopher A  Scherer Michelle M
Affiliation:Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States of America.
Abstract:Interfacial electron transfer has been shown to occur between sorbed Fe(II) and structural Fe(III) in Fe oxides, but it is unknown whether a similar reaction occurs between sorbed Fe(II) and Fe(III)-bearing clay minerals. Here, we used the isotopic specificity of (57)Fe Mo?ssbauer spectroscopy to demonstrate electron transfer between sorbed Fe(II) and structural Fe(III) in an Fe-bearing smectite clay mineral (NAu-2, nontronite). Mo?ssbauer spectra of NAu-2 reacted with aqueous (56)Fe(II) (which is invisible to (57)Fe Mo?ssbauer spectroscopy) showed direct evidence for reduction of NAu-2 by sorbed Fe(II). Mo?ssbauer spectra using aqueous (57)Fe(II) showed that sorbed Fe(II) is oxidized upon sorption to the clay and pXRD patterns indicate that the oxidation product is lepidocrocite. Spectra collected at different temperatures indicate that reduction of structural Fe(III) by sorbed Fe(II) induces electron delocalization in the clay structure. Our results also imply that interpretation of room temperature and 77 K Mo?ssbauer spectra may significantly underestimate the amount of Fe(II) in Fe-bearing clays. These findings provide compelling evidence for abiotic reduction of Fe-bearing clay minerals by sorbed Fe(II), and require us to reframe our conceptual model for interpreting biological reduction of clay minerals, as well as contaminant reduction by reduced clays.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号