首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应3DLBP特征的人脸深度图像识别
引用本文:袁理. 基于自适应3DLBP特征的人脸深度图像识别[J]. 电视技术, 2013, 37(19)
作者姓名:袁理
作者单位:1. 武汉纺织大学电子与电气工程学院,湖北武汉,430073
2. 武汉大学电子信息学院,湖北武汉,430079
基金项目:湖北省科技攻关计划项目(2006AA301B44)资助
摘    要:针对人脸深度图像的分类识别问题展开研究,提出一种自适应3DLBP(3D Local Binary Pattern,3DLBP)特征提取算法.该特征提取算法以机器学习理论为基础,首次将反馈学习理论与3DLBP特征提取过程相结合,以保证特征提取算法对训练样本集的变化具有理想的普适性;同时,为了提高自适应特征提取算法的稳定性,提出使用多分类器对反馈学习过程进行优化.实验结果表明,自适应3DLBP特征对训练样本集的变化具有较好的有效性和稳定性,在FRGCv2.0人脸数据库上取得了理想的识别效果.

关 键 词:人脸识别  深度图像  自适应3DLBP
收稿时间:2012-11-19
修稿时间:2012-12-08

Face recognition based on intensity image and adaptive 3DLBP features
YUAN Li. Face recognition based on intensity image and adaptive 3DLBP features[J]. Ideo Engineering, 2013, 37(19)
Authors:YUAN Li
Affiliation:Wuhan Textile University, School of Electronic and Electrical Engineering
Abstract:This paper mainly studied the face recognition based on intensity images, and proposed an adaptive 3DLBP (3D Local Binary Pattern) feature extraction algorithm. On the basis of machine learning theory, this adaptive feature extraction algorithm for the first time combines feedback learning with 3DLBP feature extraction, and this combination could guarantee the algorithm has ideal common adaptability for the changes of sample sets; at the same time, complementary multiple classifiers are used in pre-classification process in order to improve the robustness of the algorithm. Experiment results confirm that the obtained adaptive 3DLBP features has ideal common adaptability for changes of sample sets, and achieved good test results on FRGCv2.0 database.
Keywords:face recognition   intensity image   adaptive 3DLBP
本文献已被 万方数据 等数据库收录!
点击此处可从《电视技术》浏览原始摘要信息
点击此处可从《电视技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号