首页 | 本学科首页   官方微博 | 高级检索  
     


Phosphorylation of myosin regulatory light chain eliminates force-dependent changes in relaxation rates in skeletal muscle
Authors:JR Patel  GM Diffee  XP Huang  RL Moss
Affiliation:Department of Physiology, University of Wisconsin, Madison 53706, USA. patel@facstaff.wisc.edu
Abstract:The rate of relaxation from steady-state force in rabbit psoas fiber bundles was examined before and after phosphorylation of myosin regulatory light chain (RLC). Relaxation was initiated using diazo-2, a photolabile Ca2+ chelator that has low Ca2+ binding affinity (K(Ca) = 4.5 x 10(5) M(-1)) before photolysis and high affinity (K(Ca) = 1.3 x 10(7) M(-1)) after photolysis. Before phosphorylating RLC, the half-times for relaxation initiated from 0.27 +/- 0.02, 0.51 +/- 0.03, and 0.61 +/- 0.03 Po were 90 +/- 6, 140 +/- 6, and 182 +/- 9 ms, respectively. After phosphorylation of RLC, the half-times for relaxation from 0.36 +/- 0.03 Po, 0.59 +/- 0.03 Po, and 0.65 +/- 0.02 Po were 197 +/- 35 ms, 184 +/- 35 ms, and 179 +/- 22 ms. This slowing of relaxation rates from steady-state forces less than 0.50 Po was also observed when bundles of fibers were bathed with N-ethylmaleimide-modified myosin S-1, a strongly binding cross-bridge derivative of S1. These results suggest that phosphorylation of RLC slows relaxation, most likely by slowing the apparent rate of transition of cross-bridges from strongly bound (force-generating) to weakly bound (non-force-generating) states, and reduces or eliminates Ca2+ and cross-bridge activation-dependent changes in relaxation rates.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号