首页 | 本学科首页   官方微博 | 高级检索  
     


Comparison of FDS Prediction of Smoke Movement in a 10-Storey Building with Experimental Data
Authors:G Hadjisophocleous  Q Jia
Affiliation:(1) Carleton University, Ottawa, ON, Canada
Abstract:In this study, the Fire Dynamics Simulator (FDS), a computational fluid dynamics (CFD) model developed by National Institute of Standards and Technology (NIST) is used to simulate fire tests conducted at the National Research Council of Canada (CNRC). These tests were conducted in an experimental 10-storey tower to generate realistic smoke movement data. A full size FDS model of the tower was developed to predict smoke movement from fires that originate on the second floor. Three propane fire tests were modelled, and predictions of O2, CO2 concentrations and temperature on each floor are compared with the experimental data. This paper provides details of the tests, and the numerical modelling, and discusses the comparisons between the model results and the experiments. The 10-storey experimental tower was designed to simulate the centre core of high-rise buildings. It includes a compartment and corridor on each floor, a stair shaft, elevator shaft and service shafts. Three propane fire tests were conducted in 2006 and 2007 to study smoke movement through the stair shaft to the upper floors of the building. The fire was set in the compartment of the 2nd floor. Thermocouples and gas analyzers were placed on each floor to measure temperature and O2, CO2 and CO concentrations. Comparisons in the fire compartment and floor of fire show that the FDS model gives a good prediction of temperature and O2 and CO2 concentrations. In the stair shaft and upper floors there are some small differences which are due to the effect of heat transfer to the stairs that was not considered in the model. Overall the study demonstrates that FDS is capable of modelling fire development and smoke movement in a high rise building for well ventilated fires.
Keywords:fire safety  smoke movement  fire dynamics simulator (FDS)  fire modelling
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号