首页 | 本学科首页   官方微博 | 高级检索  
     

一种求解有约全局优化问题的新型混合方法
引用本文:杨若黎,吴沧浦. 一种求解有约全局优化问题的新型混合方法[J]. 北京理工大学学报(英文版), 1995, 4(1): 7-16
作者姓名:杨若黎  吴沧浦
作者单位:北京理工大学自动控制系
摘    要:通过将模拟退火算法与非线性规划神经网络适当结合,本文提出一种求解有约束全局优化问题的新型混合方法.为了使该方法尽可能保持一般模拟退火算法通用性强的优点,在每一次迭代中不是采用非线性规划神经网络直接求原问题的局部最优解,而是通过求解一个辅助优化问题得到原问题的可行解.数值计算结果表明,与使用罚函数方法处理约束的模拟退火算法相比,本文提出的混合方法不仅可靠性高,而且可以显著地提高计算效率.

关 键 词:最优化;神经网络/全局优化;模拟退火

A New Hybrid Method for Constrained Global Optimization
Yang Ruoli and Wu Cangpu. A New Hybrid Method for Constrained Global Optimization[J]. Journal of Beijing Institute of Technology, 1995, 4(1): 7-16
Authors:Yang Ruoli and Wu Cangpu
Affiliation:Department of Automatic Control, Beijing Institute of Technology, Beijing 100081;Department of Automatic Control, Beijing Institute of Technology, Beijing 100081
Abstract:By combining properly the simulated annealing algorithm and the nonlinear programming neural network, a new hybrid method for comtrained global optimization is proposed in this paper. To maintain the applicability of the simulated annealing algorithm used in the hybrid method as general as possible, the nonlinear programming neural network is employed at each iteration to find only a feasible solution to the original constrained problem rather than a local optimal solution. Such a feasible solution is obtained by solving an auxiliary optimization problem with a new objective function. The computational results for two numerical examples indicate that the proposed hybrid method for constrained global optimization is not only highly reliable but also much more effcient than the simulated annealing algorithm using the penalty function method to deal with the constraints.
Keywords:optimization  neural networks/global optimization  simulated annealing  
本文献已被 CNKI 等数据库收录!
点击此处可从《北京理工大学学报(英文版)》浏览原始摘要信息
点击此处可从《北京理工大学学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号