首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊相关度的模糊C均值聚类加权指数研究
引用本文:肖满生,阳娣兰,张居武,唐文评. 基于模糊相关度的模糊C均值聚类加权指数研究[J]. 计算机应用, 2010, 30(12): 3388-3390
作者姓名:肖满生  阳娣兰  张居武  唐文评
作者单位:1. 湖南工业大学2.
基金项目:湖南省教育厅科研项目,湖南省科技厅科技计划项目
摘    要:在极小化模糊C均值(FCM)聚类目标函数的过程中,针对目前模糊加权指数m的确定缺乏理论依据和有效评价方法的问题,提出了一种基于模糊相关度的模糊加权指数计算方法。首先定义模糊相关度的聚类有效性函数,然后通过Gauss迭代计算FCM聚类有效性并将其反馈到模糊加权指数的变化中,从而使m收敛到一个稳定的最优解。理论分析和实验结果表明,该算法是有效的,所得到加权指数m符合预期的结果。

关 键 词:模糊加权指数  模糊C均值  聚类有效性  模糊相关度  
收稿时间:2010-06-02
修稿时间:2010-07-18

Research of weighting exponent of fuzzy C-means algorithm based on fuzzy relevance
XIAO Man-sheng,YANG Di-lan,ZHANG Ju-wu,TANG Wen-ping. Research of weighting exponent of fuzzy C-means algorithm based on fuzzy relevance[J]. Journal of Computer Applications, 2010, 30(12): 3388-3390
Authors:XIAO Man-sheng  YANG Di-lan  ZHANG Ju-wu  TANG Wen-ping
Abstract:In the process of minimization Fuzzy C-Means (FCM) clustering objective function, to solve the problem of lacking theoretical foundation and effective evaluation methodology in determining fuzzy weighted exponent "m" at present, a fuzzy weighted exponent algorithm based on fuzzy relevance was put forward. Firstly, valid function was defined based on Fuzzy relevance, then the validity of FCM clustering was calculated by Gauss iteration and its result was returned to the change of fuzzy weighted exponent, the fuzzy weighted exponent "m" will be converged to a stable optimum resolution. This algorithm is proved to be effective by theoretical analysis and experiments, and the weighted exponent "m" got from this algorithm conforms to prospective result.
Keywords:fuzzy weighting exponent   Fuzzy C-Means (FCM)   clustering validity   fuzzy relevance
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号