首页 | 本学科首页   官方微博 | 高级检索  
     


Chip-based quantitative capillary electrophoresis/mass spectrometry determination of drugs in human plasma
Authors:Deng Y  Zhang H  Henion J
Affiliation:Analytical Toxicology, New York State College of Veterinary Medicine, Cornell University, Ithaca, New York 14850, USA.
Abstract:A chip-based capillary electrophoresis/mass spectrometry (CE/MS) system is described for the on-chip separation and coupled electrospray detection of selected small drug molecule compounds. These studies include the quantitative determination of carnitine and acetylcarnitine in analytical standard solutions as well as imipramine and desipramine in fortified human plasma samples. A clinical human plasma sample was also analyzed following the normal administration of desipramine to a volunteer, and the parent drug was determined using the described chipbased CE/MS technique. In each instance, stable isotope-incorporated internal standards were used. The chip-based CE system was microfabricated from glass and coupled to a micro ion spray device constructed in-house. The atmospheric pressure ionization system employed in this work was a PE Sciex API III tandem triple quadrupole system operated in the selected ion monitoring (SIM) mode. The results from the work reported here demonstrate the feasibility for carrying out rapid (30 s) chipbased quantitative CE/MS determinations of samples containing small-molecule compounds. Using SIM CE/ MS techniques, the described API III quadrupole system provided acceptable ion current electropherograms from subpicomole levels of the targeted compounds loaded onto the chip. The corresponding electropherograms for the standard solution of carnitines at the 1-500 microg/mL level were obtained via SIM CE/MS techniques (R2 > 0.99). In addition, analyses of fortified samples of imipramine desipramine were measured relative to their corresponding d3 internal standards to obtain calibration curves ranging from 5 to 500 microg/mL in human plasma (R2 > 0.99). The intra-assay precision ranged from 4.1 to 7.3% RSD. The intra-assay accuracy ranged from 94.0 to 104%. These results demonstrate the feasibility for on-chip CE separation and electrospray mass spectrometric determination in applications for bioanalytical measurements for these important compounds in synthetic mixtures and human plasma extracts.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号