首页 | 本学科首页   官方微博 | 高级检索  
     


Polymeric Thermal Microactuator With Embedded Silicon Skeleton: Part II—Fabrication, Characterization, and Application for 2-DOF Microgripper
Abstract: This paper presents the fabrication, characterization, and application of a novel silicon-polymer laterally stacked electrothermal microactuator. The actuator consists of a deep silicon skeleton structure with a thin-film aluminum heater on top and filled polymer in the trenches among the vertical silicon parts. The fabrication is based on deep reactive ion etching, aluminum sputtering, SU8 filling, and KOH etching. The actuator is 360 $muhbox{m}$ long, 125 $mu hbox{m}$ wide, and 30 $muhbox{m}$ thick. It generates a large in-plane forward motion up to 9 $muhbox{m}$ at a driving voltage of 2.5 V using low power consumption and low operating temperature. A novel 2-D microgripper based on four such forward actuators is introduced. The microgripper jaws can be moved along both the $x$- and $y$ -axes up to 17 and 11 $muhbox{m}$, respectively. The microgripper can grasp a microobject with a diameter from 6 to 40 $muhbox{m}$ . In addition, the proposed design is suitable for rotation of the clamped object both clockwise and counterclockwise. $hfill$2007-0192]
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号