首页 | 本学科首页   官方微博 | 高级检索  
     

能量泛函正则化模型在图像恢复中的应用分析
引用本文:李旭超,刘海宽,宋博. 能量泛函正则化模型在图像恢复中的应用分析[J]. 中国图象图形学报, 2014, 19(9): 1247-1259
作者姓名:李旭超  刘海宽  宋博
作者单位:江苏师范大学电气工程及自动化学院, 徐州 221116;江苏师范大学电气工程及自动化学院, 徐州 221116;江苏师范大学电气工程及自动化学院, 徐州 221116
基金项目:国家自然科学基金项目(61104221);江苏师范大学博士人才基金项目(10XLR27);江苏省高校自然科学基金项目(10KJB120004)
摘    要:目的 能量泛函正则化模型是图像恢复研究的热点。为使更多工程领域的研究者对正则化技术进行探索和应用,推动不适定问题的研究,对能量泛函正则化模型的进展进行了分析。方法 首先建立图像整体坐标与局部坐标的关系,分析图像恢复正则化模型的基本原理,给出并证明正则化模型各向同性与各向异性扩散定理。然后结合函数空间、图像分解和紧框架,评述能量泛函正则化模型国内外发展现状,并对正则化模型解的适定性进行分析。结果 推导出图像恢复正则化模型扩散基本原理,给出正则化模型通用表达式,讨论正则化模型存在的问题及未来的发展方向。结论 正则化技术在解决图像恢复、修复等反问题起着重要作用。目前,国内外学者对该问题的研究取得了一些成果,但许多理论问题有待进一步研究。

关 键 词:图像恢复  正则化模型  偏微分方程  能量泛函
收稿时间:2014-03-19
修稿时间:2014-05-07

Application analysis of regularization model of energy functional to image restoration
Li Xuchao,Liu Haikuan and Song Bo. Application analysis of regularization model of energy functional to image restoration[J]. Journal of Image and Graphics, 2014, 19(9): 1247-1259
Authors:Li Xuchao  Liu Haikuan  Song Bo
Affiliation:School of Electrical Engineering and Automation, Jiangsu Normaal University, Xuzhou 221116, China;School of Electrical Engineering and Automation, Jiangsu Normaal University, Xuzhou 221116, China;School of Electrical Engineering and Automation, Jiangsu Normaal University, Xuzhou 221116, China
Abstract:Objective Energy functional regularization model is an active research field in image restoration. To draw more attention from researchers of engineering community, and to push forward the research of the ill-posed problem, the paper provides a comprehensive analysis of recent development on regularization model of image restoration.Method Firstly, the relationship between total coordinate and local coordinate of image is established, and the principle of regularization term of image restoration is analyzed, and the isotropic and anisotropic diffusion theorems of regularization model are given. Secondly, based on functional space, image decomposition and tight frame, the disadvantages and advantages of the regularization models are analyzed, and the state of the art Methods are reviewed. Furthermore, the well-posed properties of solution of regularization model are analyzed.Result The basic diffusion principles of image restoration regularization model are deduced, the general formulas of regularization model are given, the potential problems and future development trends are discussed.Conclusion Regularization technology plays a key role in opposite problem research, such as image restoration and inpainting, currently, though some excellent Results have been reported, many theory challenges still need to be investigated.
Keywords:image restoration  regularization model  partial differential equation (PDE)  energy functional
点击此处可从《中国图象图形学报》浏览原始摘要信息
点击此处可从《中国图象图形学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号