首页 | 本学科首页   官方微博 | 高级检索  
     


Control of Metal Dispersion and Structure by Changes in the Solid-State Chemistry of Supported Cobalt Fischer–Tropsch Catalysts
Authors:Stuart L Soled  Enrique Iglesia  Rocco A Fiato  Joseph E Baumgartner  Hilda Vroman  Sabato Miseo
Affiliation:1. ExxonMobil Research and Engineering Company, Annandale, NJ, USA
2. Department of Chemical Engineering, University of California at Berkeley, Berkeley, California, USA
Abstract:Controlling preparation variables in supported cobalt Fischer–Tropsch catalysts has a dramatic effect on the dispersion and distribution of cobalt, and determines how active and selective the resulting catalyst will be. We detail specific examples of catalyst synthesis strategies for modifying interactions between the support and the cobalt precursor, promoting reduction, stabilizing catalysts to high-temperature treatments, minimizing deleterious support metal interactions, and controlling the distribution of cobalt on large support particles. It is important to optimize the support and precursor interaction strength, so that it is strong enough to obtain good dispersion but not too strong to prevent low temperature reduction. We show examples in which formation of surface complexes and epitaxial matching of precursor and support structures improves dispersion dramatically. Reduction promoters can help in those cases where support–precursor interactions are too strong. We show how substitutions of silicon into a titania lattice stabilizes surface area and retards formation at high oxidation temperatures of cobalt ternary oxides that reduce only at very high temperatures—an important consideration if oxidative coke removal is necessary. In addition, surface treatment of TiO2 with an irreducible oxide like ZrO2 can inhibit deleterious support interactions that can block surface cobalt sites. Selectivity can also be dramatically altered by catalyst synthesis. We illustrate a case of large (2 mm) SiO2 particles onto which cobalt can be added either uniformly or in discrete eggshells, with the eggshell catalysts having substantially higher C5+ selectivity. These approaches can lead to optimal Fischer–Tropsch catalysts with high activity and C5+ selectivity, good physical integrity, and a long life.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号