首页 | 本学科首页   官方微博 | 高级检索  
     


Fracture characterization of recycled high density polyethylene/nanoclay composites using the essential work of fracture concept
Authors:Sukjoon Na  Sabrina Spatari  Yick G Hsuan
Affiliation:Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia
Abstract:The effect of nanoclay on the plane‐strain fracture behavior of pristine High density polyethylene (HDPE) and recycled HDPE blends was studied using the essential work of fracture (EWF) concept. The failure mode of EWF tested specimens was found to be associated with the specific non‐EWF (βBwp,B). Adding 6‐wt% of nanoclay to pristine HDPE and 2‐wt% to recycle‐blends greatly decreased the βBwp,B values and led to a transition from ductile to brittle failure mode. A fractographic study revealed that the difference in failure modes was caused by the changes in micro and macro morphologies, which could be related with the specific EWF (we,B). In the ductile failure, we,B is governed by the fibril size; adding nanoclay and recycled HDPE to pristine HDPE decreased the fibril size and subsequently lowered the we,B value. In the brittle failure, the we,B value was enhanced by creating a rough fracture surface. Adding nanoclay to pristine HDPE, a steadily decrease in we,B was measured until 4‐wt% after which the change was insignificant. Conversely, nanoclay content more than 2‐wt% in recycle‐blends greatly decreased the we,B value. A transition map was constructed to illustrate the potential failure mode and the associated fracture morphology based on the tested material compositions. POLYM. ENG. SCI., 56:222–232, 2016. © 2015 Society of Plastics Engineers
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号