首页 | 本学科首页   官方微博 | 高级检索  
     


Structural degradation and mechanical fracture of hybrid fabric reinforced composites
Authors:ACMC Batista  JFS Oliveira  EMF Aquino
Affiliation:1. UFRN‐Postgraduate Program in Mechanical Engineering, Technology Center, Natal, Rio Grande do Norte, Brazil;2. UFRN‐Postgraduate Program in Materials Science and Engineering, Campus Universitário, Lagoa Nova, Natal, Brazil
Abstract:This investigation involves the study of accelerated environmental aging in two polymer composite laminates reinforced by hybrid fabrics based on carbon, Kevlar and glass fibers. Composite laminate configurations are defined as a laminate reinforced with E‐glass fiber and Kevlar 49 fiber hybrid fabric (GK) and another laminate reinforced with E‐glass fiber and AS4 carbon fiber hybrid fabric (GC). Both laminates were impregnated with epoxy vinyl ester thermosetting resin (Derakane 470‐300) consisting of four layers. Morphological studies (photo‐oxidation process and structural degradation) of environmental aging were conducted, in addition to comparative studies of the mechanical properties and fracture characteristics under the action of uniaxial tensile and three‐point bending tests in specimens in the original and aged conditions. With respect to uniaxial tensile tests for both laminates, good mechanical performance and little final damage (small loss of properties) was caused by the aging effect. However, for the three‐point bending tests, for both laminates, the influence of aging was slightly higher for all parameters studied. The low structural deterioration in the laminates is attributed to the high performance with the heat of the matrix (Derakane 470‐300) and the characteristics of the hybrid fabric, exhibiting fiber/matrix interface quality. POLYM. ENG. SCI., 56:657–668, 2016. © 2016 Society of Plastics Engineers
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号