首页 | 本学科首页   官方微博 | 高级检索  
     

1/2分数阶线性随机动力系统的非平稳响应解析解
引用本文:孔凡,许伊键,韩仁杰,徐军,洪旭. 1/2分数阶线性随机动力系统的非平稳响应解析解[J]. 动力学与控制学报, 2023, 21(4): 23-31
作者姓名:孔凡  许伊键  韩仁杰  徐军  洪旭
作者单位:合肥工业大学土木与水利工程学院,合肥 230009;同济大学土木工程学院,上海 200092;湖南大学土木工程学院,长沙 410082
基金项目:国家自然科学基金资助项目(52078399)
摘    要:提出随机激励作用下1/2分数阶线性系统非平稳响应解析解的一种新方法.首先,利用特征向量展开得到1/2分数阶阻尼系统的脉冲响应函数解析表达;之后,基于Laplace变换计算得到响应功率谱密度的解析表达式和系统均方响应.通过白噪声、调制白噪声和调制修正金井清谱三种不同随机激励类型的数值算例,利用与蒙特卡洛模拟所得结果对比证明该方法的准确性和适用性.

关 键 词:分数阶  特征向量展开  拉普拉斯变换  功率谱密度  均方响应
收稿时间:2022-10-17
修稿时间:2023-03-18

Analytical solution for non stationary response of 1/2 order fractional linear stochastic dynamical systems
Kong Fan,Xu Yijian,Han Renjie,Xu Jun,Hong Xu. Analytical solution for non stationary response of 1/2 order fractional linear stochastic dynamical systems[J]. Journal of Dynamics and Control, 2023, 21(4): 23-31
Authors:Kong Fan  Xu Yijian  Han Renjie  Xu Jun  Hong Xu
Affiliation:1.College of Civil Engineering, Hefei University of Technology, Hefei230009;2.College of Civil Engineering, Tongji University, Shanghai200092;3.College of Civil Engineering, Hunan University, Changsha410082;
Abstract:In this paper, a novel method is proposed to obtain an analytical solution for the non-stationary response of 1/2 order systems under stochastic excitation. The method first uses the eigenvector expansion to obtain the analytical expression of the impulse response function. Next, an analytical solution for the response power spectral density is obtained based on the Laplace transform. Through three illustrative numerical examples, including systems subjected to white noise, modulated white noise, and modulated colored noise with modified Kanai-Tajimi spectrum, the responses of the fractional systems are obtained analytically and compared to the pertinent Monte Carlo estimates to demonstrate the accuracy and applicability of the proposed method.
Keywords:fractional order  eigenvector expansion  Laplace transform  power spectral density  mean squared response
本文献已被 维普 等数据库收录!
点击此处可从《动力学与控制学报》浏览原始摘要信息
点击此处可从《动力学与控制学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号