首页 | 本学科首页   官方微博 | 高级检索  
     


Apparent slip arising from Stokes shear flow over a bidimensional patterned surface
Authors:Chiu-On Ng  C. Y. Wang
Affiliation:(1) Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong;(2) Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
Abstract:A mathematical model is presented for the problem of apparent slip arising from Stokes shear flow over a composite surface featuring mixed boundary conditions on the microscale. The surface can be composed of a bidimensional array of solid areas placed on an otherwise no-shear surface corresponding to an envelope over the tops of posts, or no-shear areas placed on an otherwise solid surface corresponding to an envelope over the tops of holes. Posts and holes of circular or square cross section, and solid areas of no-slip or partial-slip types are studied. Following some previously proposed scaling laws, the effective slip length is expressed as a certain function of the solid fraction for some specific cases. More refined equations based on linear regression of the computed results are obtained for these cases. Amounts of slippage arising from these bidimensional patterns are compared with those from the one-dimensional patterns of grooves/grates. It is also shown that a larger slip length can result from an arrangement where the pitch is larger in the spanwise direction than in the streamwise direction.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号