首页 | 本学科首页   官方微博 | 高级检索  
     


A computationally efficient multivariate maximum-entropy density estimation (MEDE) technique
Authors:Kouskoulas  Y Pierce  LE Ulaby  FT
Affiliation:Radiat. Lab., Univ. of Michigan, Ann Arbor, MI, USA;
Abstract:Density estimation is the process of taking a set of multivariate data and finding an estimate for the probability density function (pdf) that produced it. One approach for obtaining an accurate estimate of the true density f(x) is to use the polynomial-moment method with Boltzmann-Shannon entropy. Although rigorous mathematically, the method is difficult to implement in practice because the solution involves a large set of simultaneous nonlinear integral equations, one for each moment or joint moment constraint. Solutions available in the literature are generally not easily applicable to multivariate data, nor computationally efficient. In this paper, we take the functional form that was developed in this problem and apply pointwise estimates of the pdf as constraints. These pointwise estimates are transformed into basis coefficients for a set of Legendre polynomials. The procedure is mathematically similar to the multidimensional Fourier transform, although with different basis functions. We apply this technique, called the maximum-entropy density estimation (MEDE) technique, to a series of multivariate datasets.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号