首页 | 本学科首页   官方微博 | 高级检索  
     

融合事件信息的中文问答系统问题语义表征
引用本文:魏楚元,湛 强,樊孝忠,毛 煜,张大奎. 融合事件信息的中文问答系统问题语义表征[J]. 中文信息学报, 2015, 29(1): 146-154
作者姓名:魏楚元  湛 强  樊孝忠  毛 煜  张大奎
作者单位:1. 北京理工大学 计算机学院,北京 100081;
2. 北京建筑大学 计算机系,北京 100044
基金项目:国家重点基础研究发展计划 (973 计划)(2013CB329303);国家自然科学基金(61371194);北京市优秀人才培养资助项目(2013D005017000006)
摘    要:复杂类问题理解是中文问答系统研究的难点,基于组块的问句分析方法将整个问句转化为若干组块,降低了问句分析的难度和复杂性。针对以含有事件(动作)信息的复杂类问题,提出基于语义组块的中文问答系统问题语义表征模型,采用语义组块的思想将问题的语义成分定义为疑问焦点块、问题主题块和问题事件块三个语义组块,对问句中的事件语义信息,建立了问题事件语义结构,将一个问句表征为一个基于语义组块的问题语义表征结构,用于问答系统的问题理解。通过序列标注学习方法实现问题语义表征中语义组块自动标注。实验结果表明:问题语义组块标注效果较好,问题语义表征模型获取了问题的关键语义信息,为语义层面上的问题理解提供基础。

关 键 词:复杂类问题  事件  问题语义表征  语义组块  问题理解  

Event Information Enhanced Question Semantic Representation for Chinese Question Answering System
WEI Chuyuan,ZHAN Qiang,FAN Xiaozhong,MAO Yu,ZHANG Dakui. Event Information Enhanced Question Semantic Representation for Chinese Question Answering System[J]. Journal of Chinese Information Processing, 2015, 29(1): 146-154
Authors:WEI Chuyuan  ZHAN Qiang  FAN Xiaozhong  MAO Yu  ZHANG Dakui
Affiliation:1. School of Computer Science &Technology, Beijing Institute of Technology, Beijing 100081, China;
2. Department of Computer Science&Technology, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
Abstract:Question understanding of complex questions is a challenging issue in question answering system. For complex questions containing events (actions) information, this paper presents a question semantic representation (QSR) model based on semantic chunk. The semantic components of a complex question are labeled abstractly as the question focus, the question topic and the question event. A Semantic Structure of Question Event is then created to represent the semantic information of question event, including the question focus chunk, the question topic chunk and the question event chunk. To map the interrogative sentence into this question semantic representation, the Conditional Random Fields model is adopted for automatic semantic labeling of question semantic representation. The results show that automatic semantic labeling gains better performance.
Keywords:complex classes of questions   event   question semantic representation   semantic chunk   question understanding  
点击此处可从《中文信息学报》浏览原始摘要信息
点击此处可从《中文信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号