首页 | 本学科首页   官方微博 | 高级检索  
     

面向高铁无线网络覆盖与容量优化的多agent模糊强化学习算法
引用本文:王子瑞. 面向高铁无线网络覆盖与容量优化的多agent模糊强化学习算法[J]. 通信技术, 2015, 48(11): 1280-1284. DOI: 10.3969/j.issn.1002-0802.2015.11.015
作者姓名:王子瑞
作者单位:兰州交通大学 电子与信息工程学院,甘肃 兰州 730070
摘    要:为了提升高铁沿线LTE无线网络服务质量,提供最理想的覆盖与容量性能,在传统单agent学习算法的基础上,提出了通过多agent联合调整相邻eNodeB的天线下倾角从而实现覆盖与容量优化的模糊强化学习算法。并在LTE网络下的高速场景中进行仿真,仿真结果表明多agent学习算法与传统学习算法相比在高速环境下达到全局最优解的速率更快,特别是在应对环境突变的情况时恢复到最优解的速率有所提升。

关 键 词:高铁  覆盖与容量优化  多agent  
收稿时间:2015-06-21

Multi-Agent Fuzzy Reinforcement Learning Algorithm for Wireless Network Coverage and Capacity Optimization in High-Speed Railway
WANG Zi-rui. Multi-Agent Fuzzy Reinforcement Learning Algorithm for Wireless Network Coverage and Capacity Optimization in High-Speed Railway[J]. Communications Technology, 2015, 48(11): 1280-1284. DOI: 10.3969/j.issn.1002-0802.2015.11.015
Authors:WANG Zi-rui
Affiliation:School of Electronic and Information Engineering, Lanzhou Jiaotong University,Lanzhou Gansu 730070,China
Abstract:In order to enhance the service quality of LTE wireless network along high-speed railway and provide the optimal coverage and capacity performance, based on the traditional single-agent learning algorithm, a fuzzy reinforcement learning algorithm that jointly adjusts the neighboring eNodeB’s downtilt angle for network coverage and capacity optimization by means of multi-agent is proposed. In addition,simulation of LTE network in high-speed scenario indicates that the multi-agent learning algorithm could fairly improve the convergence rate of global optimal configurations in high-speed environment as compared with traditional reinforcement learning algorithm, in particular the restoration rate when dealing with the sudden environmental change.
Keywords:high-speed railway  coverage and capacity optimization  multi-agent  
点击此处可从《通信技术》浏览原始摘要信息
点击此处可从《通信技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号