首页 | 本学科首页   官方微博 | 高级检索  
     


Sol-gel-derived composite antimony-doped, tin oxide-coated clay-silicate semitransparent and conductive electrodes
Authors:Sadeh A  Sladkevich S  Gelman F  Prikhodchenko P  Baumberg I  Berezin O  Lev O
Affiliation:The Casali Institute of Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
Abstract:A new form of conductive and transparent porous composite electrode is introduced. The electrode material is composed of antimony-doped, tin oxide (ATO)-coated mica platelets imbedded in sol-gel-derived silicate or methyl silicate network. The platelet clays self-align in a layered structure within the silicate film, an anisotropic construction that minimizes the ATO loading required to achieve electric percolation. Transparency and resistance as a function of clay loading is reported with typical values of 100 k Omega/square and 1.5 OD for a 20-microm-thick film. The transparency is lower as compared to sputtered ATO glasses, but this is, as far as we know, the best method for the low-temperature preparation of transparent, porous, and electrically conductive (as opposed to the amply reported ionically conductive) electrode materials. Permselectivity induced by the silicate and clay ingredients is demonstrated by permeation of positively charged methyl viologen compared to negatively charged ferricyanide. Prussian blue-modified ATO-coated platelets dispersed in sol-gel-derived silicate were used to demonstrate feasibility of a transparent and electrically conductive porous electrochromic material.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号