首页 | 本学科首页   官方微博 | 高级检索  
     


LanHEP—a package for the automatic generation of Feynman rules in field theory. Version 3.0
Authors:AV Semenov
Affiliation:Laboratory of Particle Physics, Joint Institute for Nuclear Research, 141 980 Dubna, Moscow Region, Russian Federation
Abstract:The LanHEP program version 3.0 for Feynman rules generation from the Lagrangian is described. It reads the Lagrangian written in a compact form, close to the one used in publications. It means that Lagrangian terms can be written with summation over indices of broken symmetries and using special symbols for complicated expressions, such as covariant derivative and strength tensor for gauge fields. Supersymmetric theories can be described using the superpotential formalism and the 2-component fermion notation. The output is Feynman rules in terms of physical fields and independent parameters in the form of CompHEP model files, which allows one to start calculations of processes in the new physical model. Alternatively, Feynman rules can be generated in FeynArts format or as LaTeX table. One-loop counterterms can be generated in FeynArts format.

Program summary

Program title: LanHEPCatalogue identifier: ADZV_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECH_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 83 041No. of bytes in distributed program, including test data, etc.: 1 090 931Distribution format: tar.gzProgramming language: CComputer: PCOperating system: LinuxRAM: 2 MB (SM), 12 MB (MSSM), 120 MB (MSSM with counterterms)Classification: 4.4Nature of problem: Deriving Feynman rules from the LagrangianSolution method: The program reads the Lagrangian written in a compact form, close to the one used in publications. It means that Lagrangian terms can be written with summation over indices of broken symmetries and using special symbols for complicated expressions, such as covariant derivative and strength tensor for gauge fields. Tools for checking the correctness of the model, and for simplifying the output expressions are provided. The output is Feynman rules in terms of physical fields and independent parameters in the form of CompHEP model files, which allows one to start calculations of processes in the new physical model. Alternatively, Feynman rules can be generated in FeynArts format or as a LaTeX table.Running time: 1 sec (SM), 8 sec (MSSM), 8 min (MSSM with counterterms)
Keywords:11  10  -z
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号